МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет» Институт химии и энергетики Кафедра «Электроснабжение и электротехника»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

«Исследование нелинейной индуктивности и феррорезонанса»

Студент: Синдицкий.П.А

Группа: ЭЭТБ-2107а		
Преподаватель: Шаврин	a.H.B	
Отметка о допуске	Дата	
Отметка о	Дата	
выполнении		
Отметка о защите	Дата	

Цель работы – изучение экспериментальных и расчётных методов определения параметров схемы замещения нелинейной индуктивности и исследование резонансных режимов в нелинейных цепях.

Программа работы

- 1) Выполнить индивидуальную расчётную часть.
- 2) Снять вольтамперные характеристики катушки с ферромагнитным сердечником и последовательной резонансной цепи с этой катушкой.
- 3) Рассчитать вольтамперные характеристики последовательной резонансной цепи и сравнить её с экспериментальной.
- 4) Построить по результатом измерений вольтамперную характеристику для цепи с параллельным соединением катушки с ферромагнитным сердечником и линейной ёмкостью.

Описание лабораторной установки

В работе исследуется катушка с ферромагнитным сердечником в цепи переменного тока. В качестве нелинейной катушки используется одна катушка 200 витков миниблока «Магнитная цепь»

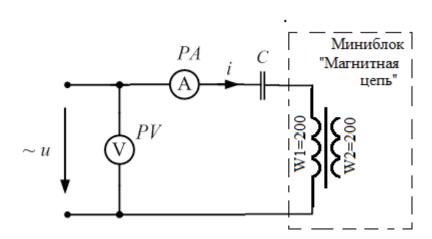


Рисунок 3.6 – Электрическая схема с последовательным соединением катушки с ферромагнитным сердечником и линейной ёмкости

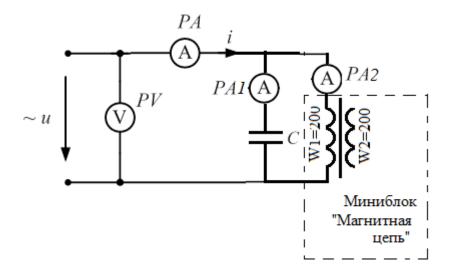


Рисунок 3.7 - Электрическая схема с параллельным соединением катушки с ферромагнитным сердечником и линейной емкости

Источником синусоидальной ЭДС служит блок генераторов напряжений. Синусоидальное напряжение на выходе генератора задается переключателем «ФОРМА». Амплитуда выходного напряжения устанавливается ручкой «АМ-ПЛИТУДА» в диапазоне 0-12 В, а частота ручкой энкодера-потенциометра.

Для измерения величин I и U в исследуемых цепях используют блоки мультиметров.

T ~ II	U	U
Таблица – Исходные	панные исспелуемои	эпектрической пепи
таолица ттеходиве	данные исследуемой	электри теской цени

Вариант	1	2	3	4	5	6	7	8
C , мк Φ	4,4	4,87	5,4	5,87	4,4	4,87	5,4	5,87
<i>I</i> , мА	50	50	70	70	60	60	80	80
U, B	6,5	6,5	7	7	7,5	7,5	8	8

Порядок выполнения экспериментальной части

- 1. Соберите электрическую цепь, соответствующую схеме на рис. 3.6. Исключите немагнитный зазор в катушке, если он имеется.
- 2. К катушке и конденсатору подключите мультиметры в режиме измерения переменного тока и напряжения. Следует помнить, что напряжение на конденсаторе и катушке индуктивности может превышать входное напряжение. Величину емкости конденсатора С возьмите согласно своему варианту (табл. 3.1).

Собранную схему покажите преподавателю или учебному мастеру.

- 3. Включите генератор, установите частоту $f1 = 400 \, \Gamma \mu$.
- 4. Плавно уменьшая и увеличивая напряжение генератора, убедитесь, что в цепи происходят скачки тока. При необходимости подрегулируйте частоту генератора так, чтобы ток после скачка составлял 60...80мА. Плавно увеличивая напряжение от 0, снимите участок 0а вольт-амперной характеристики (см. рис. 3.4, в). Увеличьте напряжение несколько выше точки в и уменьшая его снимите участок характеристики вб. Результаты измерений занесите в табл. 3.2 Таблица 3.2 Исследование последовательного соединения нелинейной катушки и конденсатора

	Участок 0а			исток 0a U>U2		Участок вб					
U, B	0	0,47	1,29	2,09	2,7	1,48	1,15	0,92	1,86	0,88	
І, мА	0	5,4	11,3	17,7	82,3	70,8	65,7	60,3	75,7	58	

- 5. Постройте графики снятых участков характеристики и соедините их между собой пунктирной линией.
- 6. Для снятия вольт-амперной характеристики катушки индуктивности удалите из схемы конденсатор. Собранную схему покажите преподавателю или учебному мастеру. Исключите немагнитный зазор, если он имеется.
- 7. Включите генератор, установите частоту f1 = f полученную в процессе эксперимента. Увеличивая напряжение на катушке и контролируя ток от нуля до 150мA с шагом 10мA, внесите в табл. 3.3 значения напряжения на катушке и тока.

Таблица 3.3 – Экспериментальная ВАХ нелинейной катушки

Эксперим	ентальные	Расчетные данные			ные	
дан	ные					
І,мА	$U_{\it RL}$,B	U_{R} , B	U_{L} ,B	U_{C} ,B	$U_L - U_C$,B	U,B
10,4	2,32	0,029	2,326	1,03	1,296	1,65
20,3	3,89	0,057	3,89	2,02	1,87	2,75
29,5	4,41	0,083	4,4	2,94	1,46	3,28
39,8	4,65	0,11	4,64	3,96	0,68	4,02
50,3	4,78	0,14	4,77	5	-0,23	5
61,9	4,89	0,17	4,88	6,16	-1,28	6,28
71	4,95	0,2	4,94	7,07	-2,13	7,38
80,3	5,01	0,22	5	7,99	-2,99	8,53
90,7	5,06	0,25	5,05	9,03	-3,98	9,87
100,9	5,1	0,28	5,09	10,04	-4,95	11,19
110	5,12	0,31	5,11	10,9	-5,79	12,34
126	5,21	0,35	5,19	12,54	-7,35	14,53
140	0	0,39	-	13,93	-	-

8. Измерьте омметром величину активного сопротивления катушки и вычислите емкостное сопротивление конденсатора:

$$R_K = 2,8 O_M$$
 $X_C = \frac{1}{2 \pi f_C} = 99,52 O_M$

9. Рассчитайте и запишите в табл. 3.3 значения:

$$U_R = R_\kappa I \,, \, U_L = \sqrt{U_{RL}^2 - U_R^2} \,, \, U_C = X_C I \,, \, U = \sqrt{\left(U_L - U_C\right)^2 + U_R^2} \,.$$

- 10. Постройте график U(I) и сравните его с экспериментальным графиком. Объясните расхождение результатов.
- 11. Постройте, используя расчётные данные (табл.3.3) две векторные диаграммы для режимов до и после резонанса, считая конденсатор чисто реактивным элементом, а ток и напряжение эквивалентными синусоидами
- 12. Соберите схему (рис. 3.7), установите ту же величину емкости. Плавно изменяя напряжение в пределах от 0 до 6В, определите напряжение, при котором ток

в цепи будет минимальным. Увеличивая напряжение и контролируя ток в цепи снимите показания приборов с шагом по напряжению 0.5 В. Результаты измерений запишите в табл. 3.4.

Таблица 3.4 – Исследование параллельного соединения нелинейной катушки и конденсатора

U,B	І,мА	I_L , MA	I_C , MA
0,5	3,6	2,7	6,6
1	9,1	5,1	14,4
1,5	13,3	6,9	21
2	17,7	8,4	26,3
2,5	24,2	11,1	35,6
3	28,3	13,3	41,8
3,5	32	16,2	48,6
4	35,2	21,6	57,1
4,5	36,2	26,8	63,2
5	35,1	43,6	70,5
5,5	37,8	30,4	77,3
6	41,2	31,9	84,7

13. Постройте по результатам измерений зависимости общего тока, тока в катушке и тока емкости от приложенного напряжения. Объясните, почему при проведении опыта не было ни скачков тока, ни скачков напряжения

14. Сделайте выводы по результатам экспериментов.

Вывод: В ходе лабораторной работы были изучены экспериментальные и расчетные методы определения параметров схемы замещения нелинейной индуктивности и исследовали резонансные режимы в нелинейных цепях и построили графики зависимостей.